Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
J Plant Physiol ; 294: 154195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377939

RESUMO

We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.


Assuntos
Fumarato Hidratase , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fumarato Hidratase/genética , Ácidos Tricarboxílicos/metabolismo , Ciclo do Ácido Cítrico , Plantas/genética , Plantas/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Metilação de DNA/genética , Respiração
2.
Appl Environ Microbiol ; 90(2): e0211123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289138

RESUMO

Despite the significant presence of plant-derived tricarboxylic acids in some environments, few studies detail the bacterial metabolism of trans-aconitic acid (Taa) and tricarballylic acid (Tcb). In a soil bacterium, Acinetobacter baylyi ADP1, we discovered interrelated pathways for the consumption of Taa and Tcb. An intricate regulatory scheme tightly controls the transport and catabolism of both compounds and may reflect that they can be toxic inhibitors of the tricarboxylic acid cycle. The genes encoding two similar LysR-type transcriptional regulators, TcuR and TclR, were clustered on the chromosome with tcuA and tcuB, genes required for Tcb consumption. The genetic organization differed from that in Salmonella enterica serovar Typhimurium, in which tcuA and tcuB form an operon with a transporter gene, tcuC. In A. baylyi, tcuC was not cotranscribed with tcuAB. Rather, tcuC was cotranscribed with a gene, designated pacI, encoding an isomerase needed for Taa consumption. TcuC appears to transport Tcb and cis-aconitic acid (Caa), the presumed product of PacI-mediated periplasmic isomerization of Taa. Two operons, tcuC-pacI and tcuAB, were transcriptionally controlled by both TcuR and TclR, which have overlapping functions. We investigated the roles of the two regulators in activating transcription of both operons in response to multiple effector compounds, including Taa, Tcb, and Caa.IMPORTANCEIngestion of Taa and Tcb by grazing livestock can cause a serious metabolic disorder called grass tetany. The disorder, which results from Tcb absorption by ruminants, focuses attention on the metabolism of tricarboxylic acids. Additional interest stems from efforts to produce tricarboxylic acids as commodity chemicals. Improved understanding of bacterial enzymes and pathways for tricarboxylic acid metabolism may contribute to new biomanufacturing strategies.


Assuntos
Acinetobacter , Ácido Aconítico , Ácido Aconítico/metabolismo , Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo
3.
Nat Ecol Evol ; 7(9): 1398-1407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537385

RESUMO

The reverse tricarboxylic acid (rTCA) cycle is touted as a primordial mode of carbon fixation due to its autocatalytic propensity and oxygen intolerance. Despite this inferred antiquity, however, the earliest rock record affords scant supporting evidence. In fact, based on the chimeric inheritance of rTCA cycle steps within the Chlorobiaceae, even the use of the chemical fossil record of this group is now subject to question. While the 1.64-billion-year-old Barney Creek Formation contains chemical fossils of the earliest known putative Chlorobiaceae-derived carotenoids, interferences from the accompanying hydrocarbon matrix have hitherto precluded the carbon isotope measurements necessary to establish the physiology of the organisms that produced them. Overcoming this obstacle, here we report a suite of compound-specific carbon isotope measurements identifying a cyanobacterially dominated ecosystem featuring heterotrophic bacteria. We demonstrate chlorobactane is 13C-depleted when compared to contemporary equivalents, showing only slight 13C-enrichment over co-existing cyanobacterial carotenoids. The absence of this diagnostic isotopic fingerprint, in turn, confirms phylogenomic hypotheses that call for the late assembly of the rTCA cycle and, thus, the delayed acquisition of autotrophy within the Chlorobiaceae. We suggest that progressive oxygenation of the Earth System caused an increase in the marine sulfate inventory thereby providing the selective pressure to fuel the Neoproterozoic shift towards energy-efficient photoautotrophy within the Chlorobiaceae.


Assuntos
Chlorobi , Cianobactérias , Chlorobi/química , Chlorobi/metabolismo , Ácidos Tricarboxílicos/metabolismo , Ecossistema , Isótopos de Carbono , Ciclo do Carbono , Carotenoides/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674898

RESUMO

Exposure to the toxin thioacetamide (TAA) causes acute hepatic encephalopathy (HE), changes in the functioning of systemic organs, and an imbalance in a number of energy metabolites. The deferred effects after acute HE development are poorly understood. The study considers the balance of the tricarboxylic acid (TCA) cycle metabolites in the blood plasma, liver, kidneys, and brain tissues of rats in the post-rehabilitation period. The samples of the control (n = 3) and TAA-induced groups of rats (n = 13) were collected six days after the administration of a single intraperitoneal TAA injection at doses of 200, 400, and 600 mg/kg. Despite the complete physiological recovery of rats by this date, a residual imbalance of metabolites in all the vital organs was noted. The results obtained showed a trend of stabilizing processes in the main organs of the animals and permit the use of these data both for prognostic purposes and the choice of potential therapeutic agents.


Assuntos
Encefalopatias , Encefalopatia Hepática , Falência Hepática Aguda , Ratos , Animais , Encefalopatia Hepática/induzido quimicamente , Tioacetamida/toxicidade , Ácidos Tricarboxílicos/metabolismo , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Encefalopatias/metabolismo
5.
J Bacteriol ; 204(12): e0028422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321838

RESUMO

Tricarboxylates such as citrate are the preferred carbon sources for Pseudomonas aeruginosa, an opportunistic pathogen that causes chronic human infections. However, the membrane transport process for the tricarboxylic acid cycle intermediates citrate and cis-aconitate is poorly characterized. Transport is thought to be controlled by the TctDE two-component system, which mediates transcription of the putative major transporter OpdH. Here, we search for previously unidentified transporters of citrate and cis-aconitate using both protein homology and RNA sequencing approaches. We uncover new transporters and show that OpdH is not the major citrate importer; instead, citrate transport primarily relies on the tripartite TctCBA system, which is encoded in the opdH operon. Deletion of tctA causes a growth lag on citrate and loss of growth on cis-aconitate. Combinatorial deletion of newly discovered transporters can fully block citrate utilization. We then characterize transcriptional control of the opdH operon in tctDE mutants and show that loss of tctD blocks citrate utilization due to an inability to express opdH-tctCBA. However, tctE and tctDE mutants evolve heritable adaptations that restore growth on citrate as the sole carbon source. IMPORTANCE Pseudomonas aeruginosa is a bacterium that infects hospitalized patients and is often highly resistant to antibiotic treatment. It preferentially uses small organic acids called tricarboxylates rather than sugars as a source of carbon for growth. The transport of many of these molecules from outside the cell to the interior occurs through unknown channels. Here, we examined how the tricarboxylates citrate and cis-aconitate are transported in P. aeruginosa. We then sought to understand how production of proteins that permit citrate and cis-aconitate transport is regulated by a signaling system called TctDE. We identified new transporters for these molecules, clarified the function of a known transport system, and directly tied transporter expression to the presence of an intact TctDE system.


Assuntos
Ácido Cítrico , Pseudomonas aeruginosa , Ácido Aconítico/metabolismo , Carbono/metabolismo , Citratos/metabolismo , Ácido Cítrico/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Tricarboxílicos/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 1021263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237186

RESUMO

In recent years, the impact of lipotoxicity on male fertility has received extensive attention, especially on Sertoli cells (SCs). In SCs, energy metabolism is important as disorders of energy metabolism result in infertility eventually. However, the underlying mechanism of lipotoxicity on energy metabolism in SCs remains unknown. Advances in high-throughput metabolomics and lipidomics measurement platforms provide powerful tools to gain insights into complex biological systems. Here, we aimed to explore the potential molecular mechanisms of palmitic acid (PA) regulating energy metabolism in SCs based on metabolomics and lipidomics. The results showed that glucose metabolism-related metabolites were not significantly changed, which suggested that PA treatment had little effect on glucose metabolism and may not influence the normal energy supply from SCs to germ cells. However, fatty acid ß-oxidation was inhibited according to accumulation of medium- and long-chain acylcarnitines in cells. In addition, the pool of amino acids and the levels of most individual amino acids involved in the tricarboxylic acid (TCA) cycle were not changed after PA treatment in SCs. Moreover, PA treatment of SCs significantly altered the lipidome, including significant decreases in cardiolipin and glycolipids as well as remarkable increases in ceramide and lysophospholipids, which indicated that mitochondrial function was affected and apoptosis was triggered. The increased apoptosis rate of SCs was verified by elevated protein expression levels of Cleaved Caspase-3 and Bax as well as decreased Bcl-2 protein expression level. Together, these findings indicated that PA may result in mitochondrial dysfunction and increased apoptosis by inhibiting fatty acid ß-oxidation of SCs.


Assuntos
Ácido Palmítico , Células de Sertoli , Aminoácidos/metabolismo , Apoptose , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Ceramidas/metabolismo , Glucose/metabolismo , Glicolipídeos/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Masculino , Mitocôndrias/metabolismo , Ácido Palmítico/farmacologia , Ácidos Tricarboxílicos/metabolismo , Ácidos Tricarboxílicos/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
7.
mBio ; 13(6): e0218722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36314837

RESUMO

Oxygenic photoautotrophic bacteria, cyanobacteria, have the tricarboxylic acid (TCA) cycle, and metabolite production using the cyanobacterial TCA cycle has been spotlighted recently. The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 (Synechocystis 6803) has been used in various studies on the cyanobacterial TCA cycle. Malate oxidation in the TCA cycle is generally catalyzed by malate dehydrogenase (MDH). However, Synechocystis 6803 MDH (SyMDH) is less active than MDHs from other organisms. Additionally, SyMDH uses only NAD+ as a coenzyme, unlike other TCA cycle enzymes from Synechocystis 6803 that use NADP+. These results suggest that MDH rarely catalyzes malate oxidation in the cyanobacterial TCA cycle. Another enzyme catalyzing malate oxidation is malic enzyme (ME). We clarified which enzyme oxidizes malate that originates from the cyanobacterial TCA cycle using analyses focusing on ME and MDH. In contrast to SyMDH, Synechocystis 6803 ME (SyME) showed high activity when NADP+ was used as a coenzyme. Unlike the Synechocystis 6803 mutant lacking SyMDH, the mutant lacking SyME accumulated malate in the cells. ME was more highly preserved in the cyanobacterial genomes than MDH. These results indicate that ME mainly oxidizes malate that originates from the cyanobacterial TCA cycle (named the ME-dependent TCA cycle). The ME-dependent TCA cycle generates NADPH, not NADH. This is consistent with previous reports that NADPH is an electron carrier in the cyanobacterial respiratory chain. Our finding suggests the diversity of enzymes involved in the TCA cycle in the organisms, and analyses such as those performed in this study are necessary to determine the enzymes. IMPORTANCE Oxygenic photoautotrophic bacteria, namely, cyanobacteria, have the tricarboxylic acid (TCA) cycle. Recently, metabolite production using the cyanobacterial TCA cycle has been well studied. To enhance the production volume of metabolites, understanding the biochemical properties of the cyanobacterial TCA cycle is required. Generally, malate dehydrogenase oxidizes malate in the TCA cycle. However, cyanobacterial malate dehydrogenase shows low activity and does not use NADP+ as a coenzyme, unlike other cyanobacterial TCA cycle enzymes. Our analyses revealed that another malate oxidation enzyme, the malic enzyme, mainly oxidizes malate that originates from the cyanobacterial TCA cycle. These findings provide better insights into metabolite production using the cyanobacterial TCA cycle. Furthermore, our findings suggest that the enzymes related to the TCA cycle vary from organism to organism and emphasize the importance of analyses to identify the enzymes such as those performed in this study.


Assuntos
Ciclo do Ácido Cítrico , Synechocystis , NADP/metabolismo , Synechocystis/metabolismo , Oxirredução , Ácidos Tricarboxílicos/metabolismo
8.
Hum Exp Toxicol ; 41: 9603271221132140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36198566

RESUMO

Herbacetin (HBN) is a glycosylated flavonoid, which possesses numerous pharmacological properties. Cyclophosphamide (CYC) is a chemotherapeutic drug that adversely affects the kidneys. The present investigation aimed to evaluate the curative potential of HBN against CYC-induced nephrotoxicity. Sprague Dawley rats (n = 48) were randomly divided into four groups: control (0.1% DMSO + food), CYC (150 mg/kg b.wt.), CYC+HBN (150 + 40 mg/kg b.wt.), and HBN (40mg/kg b.wt.). CYC treatment significantly decreased the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR) while elevating the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA). Treatment with HBN significantly recovered the activity of CAT, SOD, GPx, and GSR while reducing the concentrations of ROS and MDA. Moreover, an increase in the level of renal functional markers, including Urea, creatinine, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL), and a decrease in creatinine clearance after CYC administration was recovered to control values by HBN treatment. Furthermore, HBN treatment normalized the increased levels of inflammatory markers such as nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) after CYC administration. Besides, HBN administration increased the expression of anti-apoptotic markers (Bcl-2) while decreasing the apoptotic markers (Bax and Caspase-3). Furthermore, HBN decreased the activities of tricarboxylic acid (TCA) cycle enzymes (ICDH, αKGDH, SDH, and MDH) as well as renal mitochondrial respiratory-chain complexes (I-IV) and repolarized mitochondrial membrane potential (ΔΨm). Additionally, HBN administration significantly protected against renal histological damage induced by CYC. In conclusion, CYC-induced toxicity was effectively ameliorated by the HBN administration. These results indicate that HBN might be considered as a potential protective agent against nephrotoxicity. The observed protection may be due to its antioxidant, anti-inflammatory, and anti-apoptotic potential.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Caspase 3/metabolismo , Catalase/metabolismo , Creatinina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclofosfamida/uso terapêutico , Ciclofosfamida/toxicidade , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/uso terapêutico , Flavonoides/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Rim , Lipocalina-2 , Malondialdeído/metabolismo , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Ácidos Tricarboxílicos/metabolismo , Ácidos Tricarboxílicos/farmacologia , Ácidos Tricarboxílicos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Ureia , Proteína X Associada a bcl-2/metabolismo
9.
Aquat Toxicol ; 252: 106318, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206702

RESUMO

Mitochondria are recognized as an important target organelle for the toxicity of nanomaterials. Although the toxic effects of silver nanoparticles (AgNPs) on mitochondria have been widely reported, the mechanism behind the toxicity remains unclear. In this study, the effects of two forms of silver (AgNPs and AgNO3) on carp gill mitochondria were investigated by analyzing the mitochondrial ultrastructure, physicochemical properties of mitochondrial membrane, and mitochondrial proteomics. After exposure of common carp to AgNPs (0.75 mg/L) and AgNO3 (0.05 mg/L) for 96 h, both forms of silver were shown to cause gill mitochondrial lesions, including irregular shape, loss of mitochondrial cristae, and increased mitochondrial membrane permeability. Proteomics results revealed that AgNPs and AgNO3 induced 362 and 297 differentially expressed proteins (DEPs) in gill mitochondria, respectively. Among the DEPs, 244 were shared between AgNPs and AgNO3 treatments. These shared proteins were mainly distributed in the mitochondrial membrane and matrix, and were significantly enriched in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathway. The functional annotation of DEPs induced by both silver forms was mainly involved in energy production and conversion. These results indicated that the toxic mechanism of AgNPs and AgNO3 on gill mitochondria were comparable and the two forms of silver caused mitochondrial dysfunction in fish gills by inhibiting the TCA cycle and disrupting the electron transport chain.


Assuntos
Carpas , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Nitrato de Prata/toxicidade , Brânquias , Nanopartículas Metálicas/química , Proteômica , Poluentes Químicos da Água/toxicidade , Prata/toxicidade , Prata/metabolismo , Corantes/metabolismo , Corantes/farmacologia , Ácidos Tricarboxílicos/metabolismo , Ácidos Tricarboxílicos/farmacologia
10.
Nat Metab ; 4(10): 1322-1335, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192601

RESUMO

γ-Aminobutyrate (GAB), the biochemical form of (GABA) γ-aminobutyric acid, participates in shaping physiological processes, including the immune response. How GAB metabolism is controlled to mediate such functions remains elusive. Here we show that GAB is one of the most abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory (iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) cycle to maximize carbon allocation in promoting TH17 cell differentiation. By contrast, the absence of ABAT activity in iTreg cells enables GAB to be exported to the extracellular environment where it acts as an autocrine signalling metabolite that promotes iTreg cell differentiation. Accordingly, ablation of ABAT activity in T cells protects against experimental autoimmune encephalomyelitis (EAE) progression. Conversely, ablation of GABAA receptor in T cells worsens EAE. Our results suggest that the cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of the sequential action of two processes, ABAT-dependent mitochondrial anaplerosis and the receptor-dependent signalling response, both of which are required for T cell-mediated inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Células Th17/metabolismo , 4-Aminobutirato Transaminase/metabolismo , Receptores de GABA-A/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Metabolismo Energético , Aminobutiratos/metabolismo , Carbono/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácidos Tricarboxílicos/metabolismo
11.
PLoS One ; 17(10): e0275539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227849

RESUMO

The geological record of microbial metabolisms and ecologies primarily consists of stable isotope fractionations and the diagenetic products of biogenic lipids. Carotenoid lipid biomarkers are particularly useful proxies for reconstructing this record, providing information on microbial phototroph primary productivity, redox couples, and oxygenation. The biomarkers okenane, chlorobactane, and isorenieratene are generally considered to be evidence of anoxygenic phototrophs, and provide a record that extends to 1.64 Ga. The utility of the carotenoid biomarker record may be enhanced by examining the carbon isotopic ratios in these products, which are diagnostic for specific pathways of biological carbon fixation found today within different microbial groups. However, this joint inference assumes that microbes have conserved these pathways across the duration of the preserved biomarker record. Testing this hypothesis, we performed phylogenetic analyses of the enzymes constituting the reductive tricarboxylic acid (rTCA) cycle in Chlorobiales, the group of anoxygenic phototrophic bacteria usually implicated in the deposition of chlorobactane and isorenieretane. We find phylogenetically incongruent patterns of inheritance across all enzymes, indicative of horizontal gene transfers to both stem and crown Chlorobiales from multiple potential donor lineages. This indicates that a complete rTCA cycle was independently acquired at least twice within Chlorobiales and was not present in the last common ancestor. When combined with recent molecular clock analyses, these results predict that the Mesoproterzoic lipid biomarker record diagnostic for Chlorobiales should not preserve isotopic fractionations indicative of a full rTCA cycle. Furthermore, we conclude that coupling isotopic and biomarker records is insufficient for reliably reconstructing microbial paleoecologies in the absence of a complementary and consistent phylogenomic narrative.


Assuntos
Chlorobi , Processos Autotróficos , Biomarcadores/metabolismo , Ciclo do Carbono , Isótopos de Carbono/análise , Carotenoides/metabolismo , Lipídeos/genética , Filogenia , Ácidos Tricarboxílicos/metabolismo
12.
J Transl Med ; 20(1): 461, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209172

RESUMO

Abdominal aortic aneurysm (AAA) represents the serious vascular degenerative disorder, which causes high incidence and mortality. Alpha-ketoglutarate (AKG), a crucial metabolite in the tricarboxylic acid (TCA) cycle, has been reported to exert significant actions on the oxidative stress and inflammation. However, its role in AAA still remains elusive. Herein, we examined the effects of AKG on the formation of AAA. The study established an elastase-induced mouse abdominal aortic aneurysms model as well as a TNF-α-mediated vascular smooth muscle cells (VSMCs) model, respectively. We displayed that AKG pre-treatment remarkably prevented aneurysmal dilation assessed by diameter and volume and reduced aortic rupture. In addition, it was also observed that AKG treatment suppressed the development of AAA by attenuating the macrophage infiltration, elastin degradation and collagen fibers remodeling. In vitro, AKG potently decreased TNF-α-induced inflammatory cytokines overproduction, more apoptotic cells and excessive superoxide. Mechanistically, we discovered that upregulation of vpo1 in AAA was significantly suppressed by AKG treatment. By exploring the RNA-seq data, we found that AKG ameliorates AAA mostly though inhibiting oxidative stress and the inflammatory response. PXDN overexpression neutralized the inhibitory effects of AKG on ROS generation and inflammatory reaction in MOVAS. Furthermore, AKG treatment suppressed the expression of p-ERK1/2, 3-Cl Tyr in vivo and in vitro. ERK activator disrupted the protective of AKG on TNF-α-induced VSMCs phenotypic switch. Conclusively, AKG can serve as a beneficial therapy for AAA through regulating PXDN/HOCL/ERK signaling pathways.


Assuntos
Aneurisma da Aorta Abdominal , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Desoxirribonucleosídeos , Modelos Animais de Doenças , Elastina/metabolismo , Inflamação/metabolismo , Ácidos Cetoglutáricos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Elastase Pancreática/metabolismo , Nucleosídeos de Purina , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Ácidos Tricarboxílicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Front Immunol ; 13: 942768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119084

RESUMO

Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among working-age people. Inflammation is recognized as a critical driver of the DR process. However, the main retina-specific cell type producing pro-inflammatory cytokines and its mechanism underlying DR are still unclear. Here, we used single-cell sequencing to identify microglia with metabolic pathway alterations that were the main source of IL-1ß in STZ-induced DR mice. To profile the full extent of local metabolic shifts in activated microglia and to reveal the metabolic microenvironment contributing to immune mechanisms, we performed integrated metabolomics, lipidomics, and RNA profiling analyses in microglia cell line samples representative of the DR microenvironment. The results showed that activated microglia with IL-1ß increase exhibited a metabolic bias favoring glycolysis, purine metabolism, and triacylglycerol synthesis, but less Tricarboxylic acid (TCA). In addition, some of these especially glycolysis was necessary to facilitate their pro-inflammation. These findings suggest that activated microglia with intracellular metabolic reprogramming in retina may contribute to pro-inflammation in the early DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Purinas/metabolismo , RNA/metabolismo , Retina/metabolismo , Ácidos Tricarboxílicos/metabolismo , Triglicerídeos/metabolismo
14.
Sci Total Environ ; 853: 158604, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089048

RESUMO

The widespread use of polyethylene (PE) causes a large amount of indigestible plastic waste. Waxworms (the larvae of Plodia interpunctella) can eat PE, but the degradation principle of PE under the action of intestinal microorganisms is still unclear, especially the insufficient research on key degradable PE strains. In this study, we fed waxworms with PE. Two strains with high PE degradation efficiency were isolated and purified, and the effects of single and microbial consortia on PE degradation were evaluated by water contact angle (WCA), FTIR, GC-MS, SEM and RT-qPCR. The results showed that Meyerozyma guilliermondii ZJC1 (MgZJC1) and Serratia marcescens ZJC2 (SmZJC2) could degrade PE. However, the degradation efficiency of the microbial consortium was higher, and the weight loss rate of PE was 15.87 %. In addition, the PE degradation products of MgZJC1 were C9H10O, C20H15NO, C28H44O3 and C16H32O2, and the PE degradation products of SmZJC2 were C16H18O, C14H18N2O7 and C31H48O6. The PE degradation products of the microbial consortium were C11H24, C19H10O, C15H32, C14H30, C16H34, C25H52 and C27H56. RT-qPCR results showed that SmZJC2 promoted PE degradation by upregulating the expression of multiple genes, such as multicopper oxidase genes (PiSm-CueO). MgZJC1 responded to carbon deficiency by upregulating the expression of multiple genes, such as key enzyme genes in the tricarboxylic acid (TCA) cycle. This study can be used to develop an efficient microbial consortium for PE degradation and provide a basis for the reuse of PE waste. It can also provide a research basis for the joint degradation of PE by microbial consortia composed of bacteria and fungi.


Assuntos
Lepidópteros , Polietileno , Animais , Biodegradação Ambiental , Carbono/metabolismo , Larva/metabolismo , Oxirredutases/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Serratia marcescens , Ácidos Tricarboxílicos/metabolismo
15.
Neurobiol Dis ; 173: 105831, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908744

RESUMO

Locus coeruleus (LC) is among the first brain areas to degenerate in Alzheimer's disease and Parkinson's disease; however, the underlying causes for the vulnerability of LC neurons are not well defined. Here we report a novel mechanism of degeneration of LC neurons caused by loss of the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2). GPT2 Deficiency is a newly-recognized childhood neurometabolic disorder. The GPT2 enzyme regulates cell growth through replenishment of tricarboxylic acid (TCA) cycle intermediates and modulation of amino acid metabolism. In Gpt2-null mice, we observe an early loss of tyrosine hydroxylase (TH)-positive neurons in LC and reduced soma size at postnatal day 18. Gpt2-null LC shows selective positive Fluoro-Jade C staining. Neuron loss is accompanied by selective, prominent microgliosis and astrogliosis in LC. We observe reduced noradrenergic projections to and norepinephrine levels in hippocampus and spinal cord. Whole cell recordings in Gpt2-null LC slices show reduced soma size and abnormal action potentials with altered firing kinetics. Strikingly, we observe early decreases in phosphorylated S6 in Gpt2-null LC, preceding prominent p62 aggregation, increased LC3B-II to LC3B-I ratio, and neuronal loss. These data are consistent with a possible mechanism involving deficiency in protein synthesis and cell growth, associated subsequently with abnormal autophagy and neurodegeneration. As compared to the few genetic animal models with LC degeneration, loss of LC neurons in Gpt2-null mice is developmentally the earliest. Early neuron loss in LC in a model of human neurometabolic disease provides important clues regarding the metabolic vulnerability of LC and may lead to new therapeutic targets.


Assuntos
Locus Cerúleo , Tirosina 3-Mono-Oxigenase , Aminoácidos/metabolismo , Animais , Criança , Glutamatos/metabolismo , Humanos , Locus Cerúleo/metabolismo , Camundongos , Degeneração Neural/patologia , Norepinefrina/metabolismo , Piruvatos/metabolismo , Transaminases/metabolismo , Ácidos Tricarboxílicos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Biol Reprod ; 107(4): 998-1013, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35717588

RESUMO

Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid [TCA] cycle, pentose phosphate pathway [PPP], polyol pathway, and hexosamine biosynthetic pathway), as well as the antioxidant capacity, were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate, and increases TCA cycle and small molecules antioxidant capacity activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfill their role in providing proper support for acquiring oocyte competence.


Assuntos
Antioxidantes , Oócitos , Animais , Antioxidantes/metabolismo , Células do Cúmulo/metabolismo , Feminino , Glucose/metabolismo , Hexosaminas/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , NADP/metabolismo , Oócitos/metabolismo , Via de Pentose Fosfato/fisiologia , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos/metabolismo
17.
Nat Methods ; 19(2): 223-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132243

RESUMO

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Assuntos
Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Rim/metabolismo , Isótopos de Nitrogênio/farmacocinética , Animais , Dieta , Enzimas , Gluconeogênese , Ácido Glutâmico/biossíntese , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Imagem Molecular , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo , Fluxo de Trabalho
18.
mBio ; 13(1): e0355921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012349

RESUMO

Mycobacterium tuberculosis can cocatabolize a range of carbon sources. Fatty acids are among the carbons available inside the host's macrophages. Here, we investigated the metabolic changes of the fatty acid-induced dormancy-like state of M. tuberculosis and its involvement in the acquisition of drug tolerance. We conducted metabolomics profiling using a phosphoenolpyruvate carboxykinase (PEPCK)-deficient M. tuberculosis strain in an acetate-induced dormancy-like state, highlighting an overaccumulation of methylcitrate cycle (MCC) intermediates that correlates with enhanced drug tolerance against isoniazid and bedaquiline. Further metabolomics analyses of two M. tuberculosis mutants, an ICL knockdown (KD) strain and PrpD knockout (KO) strain, each lacking an MCC enzyme-isocitrate lyase (ICL) and 2-methylcitrate dehydratase (PrpD), respectively-were conducted after treatment with antibiotics. The ICL KD strain, which lacks the last enzyme of the MCC, showed an overaccumulation of MCC intermediates and a high level of drug tolerance. The PrpD KO strain, however, failed to accumulate MCC intermediates as it lacks the second step of the MCC and showed only a minor level of drug tolerance compared to the ICL KD mutant and its parental strain (CDC1551). Notably, addition of authentic 2-methylisocitrate, an MCC intermediate, improved the M. tuberculosis drug tolerance against antibiotics even in glycerol medium. Furthermore, wild-type M. tuberculosis displayed levels of drug tolerance when cultured in acetate medium significantly greater than those in glycerol medium. Taken together, the fatty acid-induced dormancy-like state remodels the central carbon metabolism of M. tuberculosis that is functionally relevant to acquisition of M. tuberculosis drug tolerance. IMPORTANCE Understanding the mechanisms underlying M. tuberculosis adaptive strategies to achieve drug tolerance is crucial for the identification of new targets and the development of new drugs. Here, we show that acetate medium triggers a drug-tolerant state in M. tuberculosis when challenged with antituberculosis (anti-TB) drugs. This carbon-induced drug-tolerant state is linked to an accumulation of the methylcitrate cycle (MCC) intermediates, whose role was previously known as a detox pathway for propionate metabolism. Three mutant strains with mutations in gluconeogenesis and MCC were used to investigate the correlation between drug tolerance and the accumulation of MCC metabolites. We herein report a new role of the MCC used to provide a survival advantage to M. tuberculosis as a species against both anti-TB drugs upon specific carbon sources.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Glicerol/metabolismo , Carbono/metabolismo , Ácidos Tricarboxílicos/metabolismo , Tuberculose/microbiologia , Ácidos Graxos/metabolismo , Acetatos/metabolismo
19.
Biomolecules ; 11(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34944532

RESUMO

It has been considered that proline dehydrogenase/proline oxidase (PRODH/POX) is involved in antineoplastic activity of metformin (MET). The aim of this study is identification of key metabolites of glycolysis, pentose phosphate pathway (PPP), tricarboxylic acids (TCA), urea cycles (UC) and some amino acids in MET-treated MCF-7 cells and PRODH/POX-knocked out MCF-7 (MCF-7crPOX) cells. MCF-7crPOX cells were generated by using CRISPR-Cas9. Targeted metabolomics was performed by LC-MS/MS/QqQ. Expression of pro-apoptotic proteins was evaluated by Western blot. In the absence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to similar inhibition of glycolysis (drastic increase in intracellular glucose and pyruvate) and increase in the utilization of phospho-enol-pyruvic acid, glucose-6-phosphate and some metabolites of TCA and UC, contributing to apoptosis. However, in the presence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to utilization of some studied metabolites (except glucose), facilitating pro-survival phenotype of MCF-7 cells in these conditions. It suggests that MET treatment or PRODH/POX-knock out induce similar metabolic effects (glucose starvation) and glycolysis is tightly linked to glutamine metabolism in MCF-7 breast cancer cells. The data provide insight into mechanism of anticancer activity of MET as an approach to further studies on experimental breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Glutamina/metabolismo , Metabolômica/métodos , Metformina/farmacologia , Prolina Oxidase/genética , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cromatografia Líquida , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Glicólise/efeitos dos fármacos , Humanos , Células MCF-7 , Via de Pentose Fosfato/efeitos dos fármacos , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo , Ureia/metabolismo
20.
Signal Transduct Target Ther ; 6(1): 375, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34728602

RESUMO

The scope and variety of the metabolic intermediates from the mitochondrial tricarboxylic acid (TCA) cycle that are engaged in epigenetic regulation of the chromatin function in the nucleus raise an outstanding question about how timely and precise supply/consumption of these metabolites is achieved in the nucleus. We report here the identification of a nonclassical TCA cycle in the nucleus (nTCA cycle). We found that all the TCA cycle-associated enzymes including citrate synthase (CS), aconitase 2 (ACO2), isocitrate dehydrogenase 3 (IDH3), oxoglutarate dehydrogenase (OGDH), succinyl-CoA synthetase (SCS), fumarate hydratase (FH), and malate dehydrogenase 2 (MDH2), except for succinate dehydrogenase (SDH), a component of electron transport chain for generating ATP, exist in the nucleus. We showed that these nuclear enzymes catalyze an incomplete TCA cycle similar to that found in cyanobacteria. We propose that the nTCA cycle is implemented mainly to generate/consume metabolic intermediates, not for energy production. We demonstrated that the nTCA cycle is intrinsically linked to chromatin dynamics and transcription regulation. Together, our study uncovers the existence of a nonclassical TCA cycle in the nucleus that links the metabolic pathway to epigenetic regulation.


Assuntos
Núcleo Celular/genética , Cromatina/genética , Ciclo do Ácido Cítrico/genética , Epigênese Genética/genética , Aconitato Hidratase/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citrato (si)-Sintase/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Metabolismo Energético/genética , Fumarato Hidratase/genética , Humanos , Isocitrato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/genética , Malato Desidrogenase/genética , Transcrição Gênica , Ácidos Tricarboxílicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...